Sparse Simultaneous Signal Detection for Identifying Genetically Controlled Disease Genes
نویسندگان
چکیده
منابع مشابه
Sparse Simultaneous Signal Detection With Applications in Genomics
Studying complex diseases, such as autoimmune diseases, can lead to the detection of pleiotropic loci with otherwise small effects. Through the detection of pleiotropic loci the genetic architecture of these complex diseases can be better defined, allowing for subsequent improvements in their treatment and prevention efforts. Here, we investigate the genetic relatedness of complex diseases thro...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولSparse Signal Reconstruction via Iterative Support Detection
We present a novel sparse signal reconstruction method “ISD”, aiming to achieve fast reconstruction and a reduced requirement on the number of measurements compared to the classical `1 minimization approach. ISD addresses failed reconstructions of `1 minimization due to insufficient measurements. It estimates a support set I from a current reconstruction and obtains a new reconstruction by solv...
متن کاملLearning Sparse Dictionaries for Sparse Signal Approximation
An efficient and flexible dictionary structure is proposed for sparse and redundant signal representation. The structure is based on a sparsity model of the dictionary atoms over a base dictionary. The sparse dictionary provides efficient forward and adjoint operators, has a compact representation, and can be effectively trained from given example data. In this, the sparse structure bridges the...
متن کاملSimultaneous Block-Sparse Signal Recovery Using Pattern-Coupled Sparse Bayesian Learning
In this paper, we consider the block-sparse signals recovery problem in the context of multiple measurement vectors (MMV) with common row sparsity patterns. We develop a new method for recovery of common row sparsity MMV signals, where a pattern-coupled hierarchical Gaussian prior model is introduced to characterize both the block-sparsity of the coefficients and the statistical dependency betw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2017
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2016.1270825